Programirano natjecanje automobila

igor_pangrcic

Igor Pangrčič

Sažetak

Naša Osnovna škola Frana Metelka Škocjan sudjelovala je u dvogodišnjem projektu Erasmus+ pod naslovom Minds on Hands on STEM Goes on koji je preveden Uključi mozak, zasuči rukave, postani znanstvenik. S učenicima smo prisustvovali na nekoliko projekata mobilnosti. Tijekom jedne razmjene učenika u sklopu projekta Erasmus+ u Estoniji učenici su napravili vozilo na temelju Arduino platforme koje se na stazi utrkivalo putem pametnog Android uređaja. Svaka reli-momčad ima sljedeće članove tima:

  • Mehaničara koji je izradio cijelu šasiju vozila i instalirao potrebnu opremu, dijelove itd.
  • Elektroničara koji je napravio električni krug za konačno vozilo (instalirao i spojio žice za elektroničke blokove).
  • Programera koji je prilagodio kretanje vozila i fino prilagodio njegovo ponašanje (npr. ako se kretalo samo u jednom smjeru, ili ako je vozilo bilo vrlo osjetljivo ili previše tromo pri vožnji itd.).
  • Natjecatelji su bili svi članovi ekipe koji su se natjecali na stazi i davali povratne informacije koje su trebali poboljšati. Suradnja između članova tima osigurala je bolji krajnji rezultat i uspjeh na stazi.

Ključne riječi: Arduino, Erasmus+, mehaničar, elektroničar, programer, natjecanje.

Shema za mehaničare

Mehaničari su sklopili okvir vozila prema crtežu. Jednom kad je okvir vozila bio simagepreman, čekali su da elektroničari i programeri pripreme prototip elektroničkog dijela vozila i program upravljanja motorom. Nakon testa na vozilo su ugrađene elektroničke komponente.

Slika 1. Shema konstrukcije vozila

Shema za elektroničare

Priključili su mikrokontroler, napajanje, regulator motora i motor. Budući da snaga računala iz USB utičnice nije bila dovoljna za pokretanje motora, morali su upotrijebiti dodatno napajanje (baterija od 9 V). Upravljač motora L298N slika2je H most koji omogućuje promjenu polariteta struje koja djeluje na motor, a time i smjer vrtnje motora. Uz to, upravljač motora L298N omogućuje uklanjanje napona od 5 V za napajanje Arduino mikrokontrolera. Ako su željeli promijeniti brzinu motora, žice motora morale su se spojiti na Arduino ploču s pomoću PWM pina (Pulse Width Modulation). Ploča je bila označena simbolom ~.

Slika 2. Shema i skica za Arduino 1

Kod za programere

Služeći se definicijom »analogWrite« u kodu, napon od 5 V povezan sa žicama motora može se podijeliti na 255 jedinica. To je moguće samo s pomoću PWM slika3pina.

Na primjer, vrijednost 150 znači da je signal PWM (Pulse Width Modulation ili modulacija širine impulsa) (150 × 5) / 255 volti (ili 2,9 V). Zbog nižeg napona motor se sporije okreće.

Definicija »digitalWrite« odnosi se samo na situaciju u kojoj struja postoji ili ne postoji, tj. upišite 1 ili 0 (HIGH ili LOW).

Slika 3. Kod programa 1

Daljnjim razvijanjem cijeli tim napravio je sljedeće:

  • Dodali su još jedan motor.
  • Dopunili su programski kôd podacima za drugi motor i provjerili jesu li oba motora odgovarala kretanju po želji korisnika.
  • Izradili su vozilo na dva kotača i programirali ga tako da se kreće naprijed, natrag, zaokreće naglo ili mirno te se može zavrtjeti na mjestu.

SVI gore navedeni događaji ostali su slobodan izbor i otkrili su da razvoj uvelike ovisi o vremenu koje tim ima na raspolaganju.

Ispitivanja vozila

Prvo su povezali Arduino s pametnim uređajem putem Bluetooth signala.

Natjecatelj je upravljao vozilom putem Android pametnog uređaja (mogao se koristiti i

slika4

svojim osobnim uređajem). Svaka je momčad dobila ispitno vozilo koje je prethodno bilo spremno za trening, ali sve su se ekipe natjecale s vozilom koje su sami izradili. Za vožnju su upotrebljavali aplikaciju Arduino Bluetooth RC Car.

Softveru se pristupalo preko ove poveznice.

Slika 4. QR kod aplikacije

Vozač je instalirao softver u odgovarajući uređaj i naučio ga upotrebljavati. Aplikacija je slika5prenijela signal s pametnog telefona na Arduino, što im je omogućilo daljinsko upravljanje vozilom.

Slika 5. Aplikacija Bluetooth RC Controllerslika6

Elektroničar je povezao Arduino BT modul (HC-05 ili HC-06). Da bi primio signal, BT modul mora biti spojen na Arduino tako da je VCC pin BT modula povezan s napajanjem od 5 V. GND pin povezan je s masom, a TXD pin na ploči Arduino 12.

slika7Slika 6. Shema i skica za Arduino 2

Programer je povezao pametni uređaj i Arduino putem BT veze kao što je prikazano na slici programskog koda. Ako se u aplikaciji ne pritisne nijedna tipka, prikazuje se simbol S (Stop), a simbol F prikazuje se ako se pritisne strelica prema naprijed.

.Slika 7. Kod programa 2slika8

Imali su mogućnost služiti se monitorom serijskog priključka smještenim u softveru (naveden u nastavku) za provjeru veze Tools ­ Serial monitor.

Kako bi se elektromotor provukao kroz signalni znak u kôd se moraju dodati odgovarajući redovi koda.

Slika 8. Kod programa 3

Daljnjim razvijanjem cijeli tim napravio je sljedeće:

  • Vozilo su programirali logično slijedeći kontrolne tipke mobilne aplikacije.
  • Oni kojima je ostalo malo vremena imali su mogućnost nadograditi vozilo tako da se upali jedno LED svjetlo kad pritisnete svjetlo u mobilnoj aplikaciji.
  • LED treba električni otpor od 220 Ω i pravi polaritet.

slika9
Slika 9. Shema i skica za Arduino 3

Primjer koda za LED rasvjetu:

slika10Slika 10. Kod programa 4

Trkaća staza

Za natjecanje između pojedinih momčadi koristili su predložak iz Lego EV3 seta. Momčad koja je najbrže završila stazu pobijedila je (svaki prelazak crte dovodio je do kaznenih bodova što je momčadi značilo dodatne sekunde). Natjecanje je održano pod budnim okom sudaca.

Slika 11. Staza.

Zaključak

Učenici jako vole stvarati ili programirati proizvode s Arduinom. Zanimljiv im je jer ga mogu upotrebljavati na svim operativnim sustavima, a ne ovisi o brzini, memoriji ili RAM-u računala. U našoj smo školi odlučili djeci ponuditi što više različitih interesantnih aktivnosti kroz Erasmus+ projekt, a jedna od njih je i aktivnost gdje se, osim robota, programiraju i različita vozila LEGO MINDSTORMS Education EV3 i LEGO Education WeDo te programira uz Arduino.

Literatura

  1. http://www2.arnes.si/~sspjplav/Sola/Predmeti/Leto/PRAKTICNO%20PROGRAMIRANJE/2_Programiranje%20Arduina.pdf
  2. https://ucilnica.fri.uni-lj.si/mod/page/view.php?id=16122
  3. https://svet-el.si/literatura/arduino/programiranje-z-arduino-1-3/
  4. http://www.elektronika-start.com/arduino/

Digitalna igra EMMA zlata vrijedna

sanjaPS_davorS

Sanja Pavlović Šijanović, i Davor Šijanović

Sažetak

INOVA-MLADI, 20. je po redu izložba inovacija učenika osnovnih, srednjih škola i studenata s međunarodnim djelovanjem, koja svojim djelovanjem okuplja i osnažuje učenike i njihove mentore u stvaralačkom, kreativnom i inovativnom radu te nagrađuje najbolje projekte vezane za nastavni proces i nastavni program. Projekt vukovarskih gimnazijalaca EMMA osvojio je zlatno odličje kojim se nagrađuju vrijedne ideje s izraženom kreativnošću. Ovaj uspjeh dokazuje da su permanentno učenje, ustrajnost i rad jamci uspjeha u suvremenom okruženju pri čemu stjecanje novih iskustava pomaže u bržem učenju i suočavanju s novim izazovima.

Ključni pojmovi: INOVA-MLADI 2020., EMMA, Arduino, STEM.

Uvod

Događanja poput Festivala znanosti, Maker Faire-ova, INOVA-MLADI, INOVA-BUDI UZOR, Generacija NEXT i NOW te brojna druga u Republici Hrvatskoj i šire, prilike su za učenike, škole, mentore i mlade ljude da bez obzira na početne izgovore poput manjka iskustva, podrške i znanja, početnog straha od poraza, neuspjeha i konkurencije, nastupaju odvažno i ustrajno pri čemu će zasigurno crpiti snagu za svaki sljedeći korak u nepoznato i nepredvidivo. Da se sudjelovanjem u STEM aktivnostima i projektima, ujedinjuju kreativnost, stvaralaštvo, nove tehnologije i inovativnost, dokazuju i vukovarski gimnazijalci. Novi projekt najmlađih vukovarskih gimnazijalaca izrada je digitalne igre pomoću Lego kockica, Arduino kodova i komponenti dobivenih u projektu Generacija Now. Igra je nazvana EMMA što predstavlja skraćeni naziv za EDUCATIONAL MEMORY MUSICAL ARDUINO game.

EMMA

Učenici 1.C razreda prirodoslovno-matematičkog usmjerenja odlučili su redizajnirati poznatu igru iz 1974. godine pod nazivom: „Touch me“ koju je izradio Atari (tipke Touch Me bile iste boje (crne), proizvedeni zvukovi bile su oštri). Kasnije 1978. Ralph H. Baer i Howard J. Morrison izmislili su novu verziju ove igre pod nazivom: „Simon“. „Simonovi“ su tonovi dizajnirani tako da uvijek budu skladni bez obzira na redoslijed, te se sastojali od glavne trijade u drugoj inverziji.

RedSlika 1 – Digitalna igra Emmaizajnom igre, vukovarski gimnazijalci izradili su edukativnu, didaktičku i zabavnu verziju ove popularne igre izradivši je je u potpunosti od vrlo atraktivnih i šarenih Lego kockica.

Slika 1. Digitalna igra Emma

Uređaj sadrži četiri velike tipke u boji, pri čemu svaki stvara određeni ton nakon aktivacije ili početka igre. Jedan krug u igri sastoji se od toga da uređaj osvijetli jedan ili Slika 2 - Emma - gumbiviše gumba nasumičnim redoslijedom, nakon čega igrač mora reproducirati taj redoslijed pritiskom na gumbe. Kako igra napreduje, povećava se broj odsviranih tonova koje je potrebno ponoviti.

Slika 2. Emma – gumbi

Korištenjem elektroničkih Arduino komponenti međusobno povezanih Arduino kodovima postigla se efikasnost, jednostavnost, ali i edukativni naglasak ove bezvremenske digitalne igre.

Slika 3 - Emma – sastavni dijeloviSlika 4 - Emma – Arduino komponente
Slika 3. Emma – sastavni dijelovi       Slika 4. Emma – Arduino komponente

INOVA-MLADI 2020.

Kako Gimnazija Vukovar nije samo škola u kojoj se provodi učionička nastava već je i škola za život, kroz brojne izvannastavne i projektne aktiSlika 5 - Pripreme za Inovuvnosti, učenici se pripremaju za cjeloživotno učenje koje se nameće kao nužni preduvjet uspješnog djelovanja u budućem društvu znanja, čime svojim učenicima osigurava dobru startnu poziciju za ravnopravno pozicioniranje u utrci za globalno tržište rada.

Slika 5. Pripreme za Inovu

Slika 6 - medalje i priznanjaStoga su i najmlađi vukovarski gimnazijalci krenuli stopama prošlogodišnjih maturanata, nastavljajući raditi na brojnim nedovršenim projektima i razvoju novih ideja pri čemu su osvojili i prvo priznanje i zlatnu medalju na INOVA-MLADI 2020.

Slika 6. Medalje i priznanja

S obzirom na epidemiološku situaciju diljem svijeta i mjere ograničavanja društvenih okupljanja i održavanja raznovrsnih događanja ovogodišnja INOVA-MLADI 2020. održana je 7. studenog 2020. u hibridnom izdanju, dijelom u Narodnom sveučilitu Dubrava-Kulturnom centru i dijelom online.

Učenici: Fran Hutinec, Karlo Žutić, Ema Stankoski Hrgović i Lara Šijanović, predstavili su igru EMMA sa željom i idejom privući zainteresirane te širu javnost upoznati sa svojim radom u području primjene arduino tehnologije.

Bio je ovo njihov prvi javni nastup u kojem su progovorili o aktivnostima kojima svoje ideje pretvaraju u vrijedne projekte. Sama prijava u kategoriji srednje škole, zahtijevala je prilaganje opisa projekta, video zapis i dodatni materijal (digitalni plakat). Projektu Emma moguće je pristupiti putem poveznice: https://inova-croatia.com/product-detail/digitalna-igra-emma-educational-memory-musical-arduino/ . Predstavljeno je 184 izloška od čega je u kategoriji srednje škole prijavljeno 59 projekata. Izbor najuspješnijih i odluke o dobitnicima brončanih, srebrnih i zlatnih medalja, utvrdio je Međunarodni ocjenjivački sud na temelju izravnog pregleda ili putem prezentacije /teksta, slika, videa, prikazanih na internet stranici izložbe a prema odluci Ocjenjivačkog suda ekipa vukovarske gimnazije osvojila je zlatnu medalju i priznanje. Na INOVA-MLADI 2019. maturanti vukovarske gimnazije osvojili su također zlatnu medalju sa svojim projektom Pametni grad Vukovar a najmlađi su učenici dokazali da su spremni na dobrim temeljima, nastaviti graditi, stvarati i biti dio bogate inovatorske kulture prepune kreativnosti, inovativnosti, tehnologije i poduzetništva.

Zaključak

Životno i radno okruženje mijenja se iz dana u dan a STEM pedagogija i metodika rada pridonose implementaciji i povezivanju stečenih znanja potičući kritičko razmišljanje i logičko promišljanje, učenje metodom pokušaja i pogreške i u konačnici, principom „uradi sam“. Jedino kontinuiranom edukacijom i uloženim trudom i naporom, moguće je proporcionalno ojačati samopouzdanje, inovativnost, kreativnost, komunikacijske te prezentacijske vještine učenika i osigurati cjelovit razvoj talenata svakog pojedinca čime će zasigurno povećati i osobnu konkurentnost na tržištu rada.

Literatura

  1. INOVA-MLADI 2020. https://inova-croatia.com/inova-mladi/

Platforma Arduino iz perspektive učitelja

antonio_svedruzic

Antonio Svedružić

Sažetak

U suvremenom obrazovanju sve je više računalnih alata i platformi za učenje i pomoć u učenju. Međutim, omogućuje li računalna tehnologija optimalno postizanje očekivanih ishoda učenja. Zbog toga je važno vrednovanje računalnih resursa u obrazovanju ponajprije od obrazovnih praktičara. Smatra se da je vrijednost obrazovnog računalnog alata ispunjena ako omogućuje konstruktivističko, samoregulirano, kontekstualno i suradničko učenje, a njeno tehničko oblikovanje podupire navedene oblike učenja. U tom kontekstu u radu se prikazuju didaktičke i tehnološke mogućnosti platforme Arduino za učenje programiranja i korištenja mikrokontrolera iz perspektive učitelja i nastavnika.

Ključne riječi: Arduino, didaktička vrijednosti, tehnička vrijednosti, vrednovanje.

1. Uvod

Vrednovanje računalnih alata koji pomažu učenju općenito se dijele na didaktičke i tehnološke elemente (Matijević i Topolovčan, 2017). U didaktičkom smislu obrazovni alat mora omogućiti konstruktivističko, samoregulirano, kontekstualno i suradničko učenje. Ako računalni alat omogućuje aktivno učenje koje kod učenika potiče interaktivno istraživanje, rješavanje problema, kreiranje nove vrijednosti ili suradničku konstrukciju znanja smatra se da podržava konstruktivističko učenje. Njegovu didaktičku vrijednost dodatno uvećava mogućnost individualizacije rada i samostalnog učenje uz odgovarajuću podršku virtualnog vođenja. Korisno je da računalni alat osigurava poveznicu s realnim okruženjem te da sadržaje prikazuje u stvarnom životnom kontekstu. Konačno, didaktički potencijal računalnog alata je veći ako omogućuju suradničko učenje kroz online aktivnosti u smislu dijeljenja sadržaja i suradnje s korisnicima. Podrška didaktičkim elementima učenja putem računalnog alata su njegova tehnološka obilježja kao što su: interaktivnost, intuitivno oblikovanje, mrežno funkcioniranje, jednostavno upravljanje i nadograđivanje. U tom svjetlu korisno je saznati koje su didaktičke i tehnološke vrijednosti Arduino platforme.

2. O platformi Arduino

Arduino je platforma za učenje programiranja i korištenja mikrokontrolera (Zenzerović, 2016). Osmišljena je kao „open-source“ platforma sa slobodnom razmjenom hardverskih i softverskih komponenti te programskog kôda. Uz mogućnost nadogradnje s modulima, senzorima i tzv. “shields-ovima“ može obavljati različite funkcije te postaje dostupna eksperimentalna oprema za mjerenje. No njena najveća dobrobit platforme je integracija tehničkih i prirodnih znanosti u jedinstvenu cjelinu danas objedinjeni pod pojmom STEM. Rad s platformom zahtjeva međupredmetnu integraciju koja uključuje znanja iz raznih znanstvenih disciplina od elektrotehnike, programiranja do matematike i fizike. Osnova Arduina je mikrokontroler i sklopovlje za komunikaciju dok se programiranje se izvodi pomoću uređivača u koji se unose C/C++ programski kôdovi koji dolaze uz okruženje s mogućnosti modifikacije. Nakon što se upoznaju osnovni principi programiranja uz dostupnost gotovih biblioteka na mreži rad s platformom postaje jednostavan što omogućuje velikom broju učenika rad s platformom. U literaturi postoji značajan broj stručnih radova koji opisuju primjenu platforme Arduino, međutim malo ih je koji evaluiraju njen obrazovni kapacitet. Stoga su ispitani učitelji i nastavnici koji imaju iskustva u radu s platformom o njenim didaktičkim i tehničkim mogućnostima. Vrednovanje je provedeno intervjuom sa STEM učiteljima i nastavnicima prema smjernicama procjene obrazovnog softvera iz literature (Matijević i Topolovčan, 2017).

3. Didaktička vrijednost platforme Arduino

S obzirom na konstruktivistički cilj učenja učitelji ukazuju da platforma Arduino potiče aktivno učenje što smatraju iznimno važnim korakom prema samostalnom učenju. Uz to, dodaju da u aktivnom istraživanju primjenjuju znanja u realnom okruženju čime se ostvaruje dobrobit značenja onoga što se istražuje i uči. Ukazuju na mogućnost istraživanja kroz eksperiment sa svim istraživačkim elementima od opažanja, razumijevanja kako se pojava zbiva i pronalaženja povezanosti između pojava i varijabli. Ukazuju na mogućnost rješavanja problema uz uvjet, poznavanje činjenica o pojavi koja se istražuje i temeljna znanja iz većine STEM disciplina. Što se tiče izrade i dizajna novih materijala ukazuju da je platforma dizajnirana s ciljem modifikacije, poboljšanja postojećih rješenja i realizacije novih ideja. Ipak, smatraju da je za kreiranje autentičnih projekata nužno veće iskustvo u radu s platformom.

U pogledu samostalnog upravljanja učenjem učitelji smatraju da platforma omogućuje individualizaciju rada tako što učenik samostalno odabire njemu interesantne projekte, prilagođava ih svojem predznanju, težini i mogućnosti primjene. Time aktivno upravlja i organizira vlastito učenje kao preduvjet za kvalitetno buduće samoučenje. Međutim, smatraju da je učenje bez vođenja teško ako ne postoji neki oblik podrške bilo informacijama na mreži ili podrškom učitelja. Što se tiče sadržaja i načina istraživanja učitelji ukazuju na bezbrojne mogućnosti odabira sadržaj u bazi projekata na mreži diferenciranih prema temi i složenosti projekta. Tako učenici imaju slobodu u odabiru sadržaja i njihove složenosti. Međutim, u radu s platformom nije moguće preskakanje radnji, kao u edukacijskim softverima, budući da sve radnje čine jedinstvenu cjelinu od konstrukcije i uparivanja npr. senzora i mikrokontrolera do unosa programskog kôda, mjerenja i vrednovanja dobivenih podataka.

Nadalje, učitelji smatraju da platforma ima veliki potencijal kad je u pitanju mogućnost kontekstualnog učenja odnosno povezivanje sa stvarnim situacijama i simuliranje realnih problema u radu s platformom. Potkrepljuju to činjenicom da su kreatori platforme na čelu sa suosnivačem Massimom Banzi zamislili platformu kao jednostavan i pristupačan alat za povezivanje STEM sadržaja sa stvarnim životnim kontekstom. Smatraju da rješavanje problema u stvarnom okruženju motivira učenike pružajući im uvid u rad uređaja koji će imati stvarnu funkciju u realnim životnim okolnostima. Dodaju da tehničke mogućnosti platforme omogućavaju zoran prikaz dobivenih rezultata mjerenja što je osigurano jednostavnim konvertiranjem podataka u druge audio i vizualne aplikacije.

Suvremene metode učenja promiču aktivnosti i komunikaciju manjih skupina učenika kroz interdisciplinarni kontekst. U pogledu suradničkog učenja učitelji smatraju da je platforma upravo osmišljena kako bi afirmirala slobodan pristup sadržajima i aktivnostima, a time i suradnju u učenju. Ističu da je platforma otvorenog tipa čime se potiče dijeljenje podataka o platformi, softverskih komponenti i programskog kôda. Štoviše, otvaranjem korisničkog računa na službenoj internetskoj stranici Arduina projekte je moguće dijeliti sa zajednicom. U to se uključuje još jedan oblik suradničkog učenja kroz rasprave na forumima. Učitelji ukazuju na korisnost tog tipa suradnje kojim se ukazuje na probleme u radu s platformom i moguće modifikacije projekata što budućim korisnicima značajno olakšavaju rad s platformom. O mogućnosti timskog rada učitelji smatraju da je suradnja moguća kroz interdisciplinarne projekte što učenicima pruža razmjenu znanja i iskustva. Pritom predlažu unaprijed formiranje funkcionalnih grupa i pripremu za timski rad kako bi svi učenici bili jednako uključeni u aktivnost. Ukazuju da suradnja pomaže u aktiviranju i motiviranju učenika za rad. Alternativa za rad u timu je suradnja kroz forume i druge oblike online komunikacije.

4. Tehnička vrijednost platforme Arduino

Preduvjet za ostvarivanje didaktičke vrijednosti platforme Arduino određuju njena tehnička (hardverska) obilježja. Neke od preporuke za tehničko oblikovanje su: interaktivnost, jednostavnost upravljanja, dizajn i organizacija programskog sučelja, dostupnost priručnika s uputama, mrežno funkcioniranje, instalacija na razne operativne sustave i uređaje, mogućnost dizajniranja vlastitih sadržaja i nadogradnje programskog sučelja, veliki broj primjera na mreži, niska cijena i jednostavnost nabave. U pogledu tehničke vrijednost platforme intervjuirani učitelji su ukazali na mnoge aspekte tehničkog oblikovanja platforme od kojih izdvajamo samo najzanimljivije. Tako učitelji ukazuju da je programsko sučelje moguće nadograditi za različite mikroupravljače čime je olakšana njihova upotreba i potreba za instalacijom kompajlera i softwarea za programiranje mikroupravljača. Isto tako, ukazuju na slabu procesnu moć Arduina u usporedbi s računalom, ali više mogućnosti u pogledu spajanja senzora kao i podrške periferije (npr. sabirnicu I2C, A/D converter). Što se tiče mrežnog funkcioniranja pokazuju da neke verzije platforme nemaju integrirani mrežni hardver što je potrebno nadomjestiti spajanjem WiFi-a, Ethernet-a ili GSM-gprs modula. U pogledu jednostavnosti rukovanja s platformom smatraju da nije jednostavno za početnike jer treba poznavati programski jezik premda postoje gotove funkcije i biblioteke koje ipak olakšavaju rad. IDE programsko sučelje je primjereno oblikovano premda se i dalje razvija. Na pitanje o primjerima za učenje i bazi projekata na mreži učitelji ukazuju na podršku Arduino Project Huba na kojoj su projekti razvrstani prema kategorijama (projekti s LE diode, svjetlosti, zvukom, razni gadgeti i igre) što predstavlja pomoću u učenju. Na kraju ističu nisku cijenu platforme i njenu dostupnost na tržištu.

Zaključak

U radu su ukratko prikazana iskustva učitelja i nastavnika u radu s platformom Arduino. Kriteriji za evaluaciju računalnog programa bila je njegova didaktička i tehnološka vrijednost. Oba vrednovana elementa pokazuju pozitivnu procjenjuju didaktičkih i tehnoloških vrijednosti platforme. Ukratko, platforma omogućuje:

a) konstruktivističko učenje jer učenik uči aktivno u realnom okruženju uz mogućnost dorade postojećih rješenja,
b) kontekstualno učenje na što ukazuju projekti povezani sa svakodnevnim životom koji pozitivno utječu na motivaciju i interes,
c) suradničko učenje jer se podaci o platformi, programski kôda i softverske komponente mogu dijeliti raznim komunikacijskim kanala što potiče suradnju,
d) samoregulirano učenje što podržava velika baza dostupnih projekata diferenciranih sadržajno i težinski.

Tehničko oblikovanje platforme Arduino smatraju učitelji izvrsno omogućuje ispunjavanje opisanih didaktičkih kriterije učenja. Platforma je kompatibilna s većinom mikroupravljača, posjeduje podršku periferije za spajanje senzora i jednostavno sučelje, upravljiva je na daljinu, posjeduje gotove funkcije, biblioteke i baze projekata, jednostavna je za upravljanje i niske je cijene. Prikazane didaktičke i tehnološke vrijednosti platforme mogu biti korisne informacije ostalim korisnicima u realizaciji projekata s Arduinom.

5. Literatura

  1. Matijević, M., Topolovčan, T. (2017). Multimedijska didaktika. Zagreb: Školska knjiga.
  2. Zenzerović, P. (2016). Arduino kroz jednostavne primjere. Zagreb: Hrvatska zajednica tehničke kulture.

[1] Antonio Svedružić je magistar odgojnih znanosti, profesor fizike, učitelj savjetnik, i doktorand na Učiteljskom fakultetu u Zagrebu. Znanstveni interes vezan mu je uz cjeloživotno obrazovanje i obrazovne znanosti, a stručni uz popularizaciju znanosti. Objavio je više od trideset znanstvenih i stručnih radova u časopisima i drugim publikacijama.

Arduino – proizvodnja parkirnog senzora

igor_pangrcic

Arduino je platforma talijanskog autora otvorenog koda. Razvojna ploča sastoji se od mikrokontrolera obitelji Atmel i nekih bitnih elemenata te je tako spremna za početak rada. Autor kaže da se s Arduinom mogu izrađivati različiti prototipi i može se koristiti u znanstvenim studijama, ali na tržištu svakodnevno postoje krajnji proizvodi koji sadrže Arduino sklopove. Razlog zbog kojeg je prodaja open source razvojnog okruženja snažno porasla je velika softverska platforma koja je prilagođena svim operativnim sustavima. Softverska platforma jednostavna je za korištenje i pristupačna korisniku. Pogodna je za korisnike koji se prvi put susreću s mikrokontrolerima, kao i za one koji pomoću njega žele napraviti vrhunski proizvod. Razvojno okruženje je dizajnirano tako da sadrži samo potrebne elemente dok ostatak periferije dodaje korisnik, ako to želi. Na taj se način moduli proizvode na tržištu, kao što su: relejna ploča, alfanumerički LCD modul, TFT LCD modul, modul SD memorijske kartice, širok raspon modula sa senzorima vlage, temperatura, svjetlo, boja… i još mnogo toga. Vrlo ih je jednostavno vezati na vezivne ploče te su potom spremni za programiranje. Također, jasno je kako je sklop mikrokontrolera potrebno programirati.

Arduino Nano modul jedna je od najmanjih implementacija takvih modula. Sadrži isti procesor kao Arduino Uno, odnosno AtMega328.

image
Slika 1. Arduino Nano

Slika prikazuje da se Arduino Nano sastoji od mini-USB priključka za napajanje i prijenos programa, mikroprocesora AtMega328, ključa RESET, 8 analognih terminala koji služe samo kao ulazi i mjere napon od 0 V do 5 V. Svi analogni pinovi, osim 6 i 7, mogu se koristiti kao digitalni. Konektori 4 (SDA) i 5 (SCL) podržavaju I2C komunikaciju, uzimajući u obzir da nam je za to potrebna odgovarajuća knjižnica. Ploča također ima 14 digitalnih konektora, koji se mogu definirati kao ulazi ili izlazi. Kroz svaki od njih može teći protok do 40 mA. Svaki digitalni pin ima unutarnji pull-up otpornik od 20 do 50 kΩ. Digitalni pinovi 0 (RX) i 1 (TX) također se mogu koristiti za serijsku komunikaciju s računalom. Pinovi 3, 5, 6, 9, 10 i 11 omogućuju i modulaciju širine impulsa.

Na ploči se nalaze četiri LED diode. Dvije RX i TX komunikacije, jedna LED dioda spojena je na pin 13 i aktivira se kada je pin 13 u stanju „HIGH“. Naravno, ploča se nalazi pored pinova s ​​naponom od 5 V ili 3 V i GND sadrži druge igle, primjerice pin „AREF“ povezujemo referentnim naponom za analogne ulaze i druge na njega.

Materijal potreban za stvaranje senzora za parkiranje (ultrazvučni mjerač udaljenosti):

imageimage
Slika 2. Ultrazvučni senzor     Slika 3. Arduino Nano

imageimage
Slika 4. OLED Arduino ekran        Slika 5. Žica M-M

image
Slika 6. Vezivna ploča

Prikaz kako se vežu žice na pločici za povezivanje:

image
Slika 7. Vezivna pločica

Proizvodnja parkirnog senzora

Najprije umetnite Arduino Nano u pločicu. Arduino Nano je mimageikrokontroler pomoću kojega ćemo primiti signal ultrazvučnog senzora i pretvoriti ga u sliku na ekranu.

Ima analogne i digitalne ulaze i ulaze.

Slika 8. Proizvodni proces 1

Zatim OLED zaslon. Ovaj zaslon je jednobojan i ima 4 priključka:

  • GND: negativni pol,image
  • VCC: 3.3 v pozitivni pol,
  • SDA: analogni priključak 4,
  • SCL: analogni priključak 5.

Slika 9. Proizvodni proces 2

imageNaposljetku umetnite ultrazvučni senzor.

Ovaj senzor prenosi ultrazvučni signal i vraća ga natrag na refleksiju te tako izračunava udaljenost.

Slika 10. Proizvodni proces 3

Također ima 4 priključka koja vežemo:

  • GND: negativni pol,
  • VCC: 5 v pozitivni pol,
  • Teig: digitalni 12
  • Echo: digitalni 11

Zatim sve zajedno spojite žicama.

imageSlika 11. Konačni proizvod

Aplikaciju Arduino.ide možete preuzeti na ovoj poveznici.

Programski kod:

imageSlika 12. Programski kod

Sljedeća slika prikazuje knjižnice koje trebate dodati, a ispod su hiperveze za pristupanje njima:

imageSlika 13. Knjižnice programa

https://github.com/adafruit/Adafruit_SSD1306
https://github.com/adafruit/Adafruit-GFX-Library

Videomaterijal se nalazi na mrežnoj stranici YouTube-a.

Zaključak

Učenici jako vole stvarati ili programirati proizvode s Arduinom. Zanimljiv im je jer ga mogu koristiti na svim operativnim sustavima, a ne ovisi o brzini, memoriji ili RAM-u računala. U našoj smo školi odlučili djeci ponuditi što više različitih interesantnih aktivnosti kroz Erasmus+ projekt, a jedna od njih je i aktivnost gdje se, osim robota, programiraju i različita vozila LEGO MINDSTORMS Education EV3 i LEGO Education WeDo te programira uz Arduino.

Literatura

  1. https://www.youtube.com/watch?v=tWgmN179GfQ
  2. ttps://github.com/adafruit/Adafruit_SSD1306
  3. https://github.com/adafruit/Adafruit-GFX-Library
  4. http://www.elektronika-start.com/arduino/
  5. https://www.knjiznica-celje.si/raziskovalne/4201704196.pdf